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Introduction

Research topic

Numerical solution of integral equations. More specifically, Fredholm
integral equations of the second kind in 2D with smooth kernels.

Real-world applications

Computation of equilibrium states for nonlocal diffusion equations.
Such models arise in optics, material science, mathematical biology.

W -
Example: equilibrium distribu-
tion of population subject to
nonlocal dynamics on an island.
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Introduction

Novelty of our work

We generalize classical Nystrém schemes for the discretization of
integral equations by decoupling solution nodes from quadrature nodes,
in the same way that solution spaces and quadrature formulas are
naturally decoupled in collocation or Galerkin schemes.

Figure: Coarse solution nodes (left) and fine quadrature nodes (right).
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Introduction

Motivation for decoupling

In general, the decoupled Nystrom method is more efficient than
classical Nystrom because it makes better use of degrees of freedom.

V.

Fundamental intuition
Set of solution nodes: Determines the size of the linear system to be
solved. It only has to be large enough to fully resolve the features of
the smooth exact solution.

Set of quadrature nodes: Determines the size of the quadrature
formula. It must be large enough to fully resolve the integral operator,
whose integrands typically vary more rapidly than the exact solution.
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Introduction

Prior work leading to decoupled Nystrom

In [1], a novel way to determine stable, high-order quadrature weights
for a given set of (reasonable) scattered nodes was introduced. Building
on prior work, we adopted the meshless point of view when investigating
Nystrom methods. However, decoupling is not specific to meshless.

Motivation for meshless setting

When a high-order mesh is not available, choosing a good solution
space for collocation and Galerkin methods can be hard. The Nystrom
method does not need a solution space, just solution nodes. Meshless
lets us investigate decoupling under minimal assumptions on the nodes.

v

[1] Oleg Davydov and Bruno Degli Esposti (2025). Meshless moment-free

quadrature formulas arising from numerical differentiation, CMAME.
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Starting point: the classical Nystrom method




Fredholm integral equations of the second kind

Let Q ¢ RY be a multivariate bounded domain.

We seek u € C9(2) such that
du) = [ Koeyu)dy = (). x€ @
Q

for given \ #£ 0, rhs f € C9(Q), and smooth kernel k € C9(Q x Q).

In functional notation, the same equation is written as
(M —=—Ku=f

By the Fredholm alternative, it has a unique solution iff A ¢ o(K).
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Numerical methods for integral equations

The main numerical methods for the solution of integral equations of
the second kind are the collocation method, Galerkin method,
degenerate kernel method, and Nystrom method. In this talk we focus
on the Nystrém method, and try to overcome some of its limitations.

Consider a quadrature (aka cubature) formula

1Yl

iz;WiV(Yi)%/QV(y) dy, veCiQ)

with nodes Y C Q and weights w € RIY!.
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The Nystréom method

Discretizing the integral term in Fredholm's equation leads to

1Yl

Au(x) — Z wik(x, yi)u(yi) = f(x), (1)

a semidiscrete functional equation. Introducing the vector of unknowns
i =~ u|y and imposing exactness of (1) for all x € Y gives the closed
system of linear equations

Y|

A = wik(yi, )l = f(yi), i=1,...,]Y|
j=1

This is the classical Nystrém method.
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The Nystréom method

The linear system can be written more compactly as
Al = (M — KW)a = f|y,

by introducing the matrices (K);; = k(yi,y;) and W = diag (w).

The solution u can be approximated at any point x € Q by Nystrom's
interpolation formula:

1Yl

u(x) = 1 Z wik(x, yi)d; + f(x)

The accuracy of this approximation is proportional to the accuracy of
the chosen quadrature formula.
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The Nystréom method

Advantages over collocation and Galerkin

Simpler implementation due to direct use of quadrature. Does not
require the definition of a solution space.

Disadvantages over collocation or Galerkin

The size of the system matrix A (number of solution DOFs) is tied to
the number of quadrature nodes |Y|. When the kernel is hard to
integrate, Y cannot be refined locally.

A\

Fundamental research questions in this work

Can we lift this limitation by decoupling solution nodes from quadrature
nodes in Nystrom's method? What advantages would this bring?
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Decoupled Nystrom method and error analysis




Decoupled Nystrom method

Let us go back to the semidiscrete functional equation

1Yl

X) ZWI X )/l YI) = f(X)

Imposing exactness at a set of solution nodes X # Y leads to

1Yl
ZWJ xi, ypuly)) = f(x;), i=1,...,]X].

However, to get a closed system of equations with unknown & ~ u|y,
we need a way to reconstruct the values u(y;) from the values u(x;).

This is clearly a scattered data approximation problem!

Bruno Degli Esposti (Florence) Decoupled meshless Nystrom SMART2025 10/26



Decoupled Nystrom method

Consider a reconstruction matrix R € RIYIXIXI such that
vy ® Rvix foranyve CcI(Q).

Now the decoupled system can be closed:

Yl IX|

A — Z wik(xi, y;) Z(R)jﬁ dy = f(x;).
j=1 =1

In matrix notation, the linear system is simply
Al = (M — KWR)i = fy,

with (K); = k(xi,y;j). In general, K and R are rectangular matrices.
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Refinement parameters

To properly state convergence results for the decoupled Nystrom
method, all the sets and matrices in its definition have to be made
dependent on refinement parameters h = (hx, hy):

Xp only depends on hx, and Y}, only depends on hy. Some quantities,
such as the matrices Ry, genuinely depend on both hx and hy.

For simplicity, let us assume from now on that
hX = th and hy = Cyh

for some constants Cx, Cy > 0 and a single scalar parameter h > 0.
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Error analysis of decoupled Nystrom method

Consider the decoupled Nystrom method for (Al — K)u = f. If
Q@ FecCiQ) ke CIQAxQ), )¢ a(K).
@ The quadrature scheme (Yp, wp) is stable with respect to the
vector 1-norm, and has convergence order gy < g.

© The reconstruction scheme (Xp, Yp, Rp) is stable with respect to
the matrix co-norm, and has convergence order g < q.

Then, for small h > 0, the linear system Apdp = f|x, has a unique
solution, Koo(Ap) is bounded, and there exist C1, C; > 0 such that

i, — nll., < G (kG Nl coyy]| el

+ GhE ”kHCO(ﬁxﬁ) ||U||cq(§)~

v
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Error analysis of decoupled Nystrom method

Sketch of the proof

The proof is adapted from Section 4.1 of Atkinson’'s monograph The
Numerical Solution of Integral Equations of the Second Kind and relies
on the framework of collectively compact operator approximations.

Define the family of linear operators ICp: C9(2) — C9(Q2) by
(Knu)(x) = k(x, Ya) WhRnu|x,

with k(x, Yp) being the row vector of values {k(x, yn;) | Ynj € Yn}-

We have shown that {KCp} is a collectively compact family of pointwise
convergent operators. Then the error estimate follows from Theorem
4.1.1 and Lemma 4.1.2 in Atkinson's book, after some calculations.
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Decoupled Nystrom in a meshless setting




Meshless methods

Meshless (aka meshfree) methods are a versatile class of numerical
techniques that discretize computational domains using scattered,
unstructured nodes, avoiding the complexities and limitations of
conventional mesh generation.

To solve Fredholm's integral equations and experiment with the
decoupled Nystrom method, we have placed quasi-uniform scattered
nodes in the interior of Q using the advancing front algorithm in the
library https://github.com/BrunoDegliEsposti/NodeGenLib

The C++ library has a MATLAB interface, supports 2D/3D domains,
and even trimmed CAD geometries for real-world applications.
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https://github.com/BrunoDegliEsposti/NodeGenLib

Example of boundary nodes produced by NodeGenLib in 3D
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Figure: NodeGenLib boundary nodes on gear shaft for h = 0.02.
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Example of interior nodes produced by NodeGenLib in 3D
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Figure: NodeGenLib interior nodes on gear shaft for h = 0.02.
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Meshless moment-free quadrature formulas

Quadrature formulas on scattered data are found using a recently
developed meshless approach that requires neither meshing nor moment
computation [1]. Stable quadrature weights are found as a
minimum-norm solution to a sparse linear system obtained as a
discretization of the divergence theorem by numerical differentiation
formulas, such as those used in polyharmonic RBF-FD.

Sparse interpolation matrices Ry, are computed using local
polyharmonic RBF interpolation with polynomial augmentation of
order ggr, as implemented in the library mFDlab by Oleg Davydov.

A new result on the stability of Ry, for local polyharmonic RBF
interpolation was presented by Oleg on Monday.

[1] Oleg Davydov and Bruno Degli Esposti (2025). Meshless moment-free

quadrature formulas arising from numerical differentiation, CMAME.
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Numerical experiments




Kernels and numerical errors

For the numerical experiments we use normalized Gaussian kernels
_ 2
k(x,y) = (eV2m) 9 exp(— ||Ix — y[|* /(207))

with d = 2 and standard deviation ¢ > 0.

Relative numerical errors are computed in the L2 norm by integrating
the squared error with (Yj, wp). The squared error is smooth by the
Nystrom interpolation formula.

To evaluate numerical errors, the source term f is chosen so that v is a
known function (manufactured solution). In these tests, u is Franke's
function remapped from [0,1]? to [-1,1]°.

The dense linear system Apip = f|x, is solved with a direct method.
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Choice of domain and nodes

Let Q be the region enclosed by a Cassini oval, a quartic plane curve
defined as the locus of points such that the product of the distances to
two fixed points (—a,0) and (a,0) is a constant b® € R :

Q= {(Xl,xz) cR? ‘ (Ca+2a)?+3)((xa —a)* +x3) — b* < 0}.

Figure: Cassini oval with a =0.95 and b = 1. Scattered nodes generated by
NodeGenLib with spacing parameter h = 0.05.
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Figure: Relative numerical errors as functions of hx for different orders gy .
hy = hx/2, A =1, gr = qw, Gaussian kernel with ¢ = 0.1.
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Efficiency test with localized Gaussian kernel
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Figure: Numerical errors as functions of runtime for different ratios hx/hy.
A=1, gw =5, gr =5, Gaussian kernel with o = 0.1.
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Nonlinear population dynamics model

Motivated by nonlocal models for population dynamics widely used in
ecology, we seek to compute equilibrium states of

e = /Q k(x, ) (u(y) — u(x)) dy + u(x)(a(x) — u(x)),

i.e. a nonlinear Fredholm integro-differential equation with
@ Homogeneous Neumann boundary conditions
e Logistic growth with carrying capacity a(x)
The nonlinear system is solved using Newton's method with u(®) = a.

We choose a domain Q whose shape resembles the island of Sicily, with
piecewise cubic C® boundary. The carrying capacity a(x) is a smoothed
height map computed from elevation data.
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Nonlinear population dynamics model

(a) Carrying capacity a(x).
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(c) Numerical solution. (d) Error convergence plot.
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Conclusion and future work

Conclusion

Solution nodes X can be decoupled from quadrature nodes Y in
Nystrom's method. Theoretical analysis and numerical experiments
demonstrate significantly better efficiency for localized kernels.

Directions for future work

@ Compression of A using ACA.
How does it affect the optimal ratio hx/hy?

Extension to evolution equations
Extension to 3D domains and surfaces

Extension to singular/near-singular kernels by locally refining Y

Decoupled Nystrom method to find eigenvalues of I
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Conclusion and future work

Thank you for your attention!

And once again, happy birthday Alessandra!
Thank you for everything that you've taught
me over the last 5+ years.
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Extra slides




Manufactured solutions with Chebfun

Compared to PDEs, the method of manufactured solutions is harder to
apply to integral equations, because we cannot easily evaluate the
integral over Q in the expression that defines the right-hand side

f(xi) == Au(x;) — /Q k(xi,y)u(y)dy, x € X.

We propose the following new approach for all x; € X:

@ Approximate the function y — k(x;, y)u(y) to machine precision
with a bivariate polynomial p;j(y) over a bounding box around Q
using the open-source library Chebfun.

e Find polynomial field F; such that div(F;)(y) = pi(y) exactly.

o Evaluate the integral over Q up to machine precision using the
divergence theorem and adaptive Gaussian quadrature on each
smooth piece of 912, assuming that parametrizations are known.
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