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Introduction



Introduction

Research topic
Numerical solution of integral equations. More specifically, Fredholm
integral equations of the second kind in 2D with smooth kernels.

Real-world applications
Computation of equilibrium states for nonlocal diffusion equations.
Such models arise in optics, material science, mathematical biology.

Example: equilibrium distribu-
tion of population subject to
nonlocal dynamics on an island.
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Introduction

Novelty of our work
We generalize classical Nyström schemes for the discretization of
integral equations by decoupling solution nodes from quadrature nodes,
in the same way that solution spaces and quadrature formulas are
naturally decoupled in collocation or Galerkin schemes.

Figure: Coarse solution nodes (left) and fine quadrature nodes (right).
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Introduction

Motivation for decoupling
In general, the decoupled Nyström method is more efficient than
classical Nyström because it makes better use of degrees of freedom.

Fundamental intuition
Set of solution nodes: Determines the size of the linear system to be
solved. It only has to be large enough to fully resolve the features of
the smooth exact solution.

Set of quadrature nodes: Determines the size of the quadrature
formula. It must be large enough to fully resolve the integral operator,
whose integrands typically vary more rapidly than the exact solution.

Bruno Degli Esposti (Florence) Decoupled meshless Nyström SMART2025 3 / 26



Introduction

Prior work leading to decoupled Nyström
In [1], a novel way to determine stable, high-order quadrature weights
for a given set of (reasonable) scattered nodes was introduced. Building
on prior work, we adopted the meshless point of view when investigating
Nyström methods. However, decoupling is not specific to meshless.

Motivation for meshless setting
When a high-order mesh is not available, choosing a good solution
space for collocation and Galerkin methods can be hard. The Nyström
method does not need a solution space, just solution nodes. Meshless
lets us investigate decoupling under minimal assumptions on the nodes.

[1] Oleg Davydov and Bruno Degli Esposti (2025). Meshless moment-free
quadrature formulas arising from numerical differentiation, CMAME.
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Starting point: the classical Nyström method



Fredholm integral equations of the second kind

Let Ω ⊂ Rd be a multivariate bounded domain.

We seek u ∈ Cq(Ω) such that

λu(x)−
∫
Ω
k(x , y)u(y) dy = f (x), x ∈ Ω,

for given λ ̸= 0, rhs f ∈ Cq(Ω), and smooth kernel k ∈ Cq(Ω× Ω).

In functional notation, the same equation is written as

(λI −K)u = f

By the Fredholm alternative, it has a unique solution iff λ /∈ σ(K).
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Numerical methods for integral equations

The main numerical methods for the solution of integral equations of
the second kind are the collocation method, Galerkin method,
degenerate kernel method, and Nyström method. In this talk we focus
on the Nyström method, and try to overcome some of its limitations.

Consider a quadrature (aka cubature) formula

|Y |∑
i=1

wiv(yi ) ≈
∫
Ω
v(y) dy , v ∈ Cq(Ω)

with nodes Y ⊂ Ω and weights w ∈ R|Y |.
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The Nyström method

Discretizing the integral term in Fredholm’s equation leads to

λu(x)−
|Y |∑
i=1

wik(x , yi )u(yi ) = f (x), (1)

a semidiscrete functional equation. Introducing the vector of unknowns
û ≈ u |Y and imposing exactness of (1) for all x ∈ Y gives the closed
system of linear equations

λûi −
|Y |∑
j=1

wjk(yi , yj)ûj = f (yi ), i = 1, . . . , |Y |

This is the classical Nyström method.
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The Nyström method

The linear system can be written more compactly as

Aû := (λI − KW )û = f |Y

by introducing the matrices (K )ij = k(yi , yj) and W = diag (w).

The solution u can be approximated at any point x ∈ Ω by Nyström’s
interpolation formula:

u(x) ≈ 1
λ

 |Y |∑
i=1

wik(x , yi )ûi + f (x)

 .

The accuracy of this approximation is proportional to the accuracy of
the chosen quadrature formula.
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The Nyström method

Advantages over collocation and Galerkin
Simpler implementation due to direct use of quadrature. Does not
require the definition of a solution space.

Disadvantages over collocation or Galerkin
The size of the system matrix A (number of solution DOFs) is tied to
the number of quadrature nodes |Y |. When the kernel is hard to
integrate, Y cannot be refined locally.

Fundamental research questions in this work
Can we lift this limitation by decoupling solution nodes from quadrature
nodes in Nyström’s method? What advantages would this bring?
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Decoupled Nyström method and error analysis



Decoupled Nyström method

Let us go back to the semidiscrete functional equation

λu(x)−
|Y |∑
i=1

wik(x , yi )u(yi ) = f (x).

Imposing exactness at a set of solution nodes X ̸= Y leads to

λu(xi )−
|Y |∑
j=1

wjk(xi , yj)u(yj) = f (xi ), i = 1, . . . , |X | .

However, to get a closed system of equations with unknown û ≈ u |X ,
we need a way to reconstruct the values u(yj) from the values u(xi ).

This is clearly a scattered data approximation problem!

Bruno Degli Esposti (Florence) Decoupled meshless Nyström SMART2025 10 / 26



Decoupled Nyström method

Consider a reconstruction matrix R ∈ R|Y |×|X | such that

v|Y ≈ R v|X for any v ∈ Cq(Ω).

Now the decoupled system can be closed:

λûi −
|Y |∑
j=1

wjk(xi , yj)

|X |∑
ℓ=1

(R)jℓ ûℓ = f (xi ).

In matrix notation, the linear system is simply

Aû := (λI − KWR)û = f |X ,

with (K )ij = k(xi , yj). In general, K and R are rectangular matrices.
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Refinement parameters

To properly state convergence results for the decoupled Nyström
method, all the sets and matrices in its definition have to be made
dependent on refinement parameters h = (hX , hY ):

Ah ûh := (λIh − KhWhRh)ûh = f |Xh
.

Xh only depends on hX , and Yh only depends on hY . Some quantities,
such as the matrices Rh, genuinely depend on both hX and hY .

For simplicity, let us assume from now on that

hX = CXh and hY = CY h

for some constants CX ,CY > 0 and a single scalar parameter h > 0.
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Error analysis of decoupled Nyström method

Proposition
Consider the decoupled Nyström method for (λI −K)u = f . If

1 f ∈ Cq(Ω), k ∈ Cq(Ω× Ω), λ /∈ σ(K).
2 The quadrature scheme (Yh,wh) is stable with respect to the

vector 1-norm, and has convergence order qW ≤ q.
3 The reconstruction scheme (Xh,Yh,Rh) is stable with respect to

the matrix ∞-norm, and has convergence order qR ≤ q.

Then, for small h > 0, the linear system Ah ûh = f |Xh
has a unique

solution, κ∞(Ah) is bounded, and there exist C1,C2 > 0 such that∥∥u |Xh
− ûh

∥∥
∞ ≤ C1h

qW
Y

∥∥∥∥k(x , y)∥Cq(Ω),y

∥∥∥
∞,x

∥u∥Cq(Ω)

+ C2h
qR
X ∥k∥C0(Ω×Ω) ∥u∥Cq(Ω) .
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Error analysis of decoupled Nyström method

Sketch of the proof
The proof is adapted from Section 4.1 of Atkinson’s monograph The
Numerical Solution of Integral Equations of the Second Kind and relies
on the framework of collectively compact operator approximations.

Define the family of linear operators Kh : C
q(Ω) → Cq(Ω) by

(Khu)(x) = k(x ,Yh)WhRhu |Xh
,

with k(x ,Yh) being the row vector of values {k(x , yh,j) | yh,j ∈ Yh}.
We have shown that {Kh} is a collectively compact family of pointwise
convergent operators. Then the error estimate follows from Theorem
4.1.1 and Lemma 4.1.2 in Atkinson’s book, after some calculations.
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Decoupled Nyström in a meshless setting



Meshless methods

Meshless (aka meshfree) methods are a versatile class of numerical
techniques that discretize computational domains using scattered,
unstructured nodes, avoiding the complexities and limitations of
conventional mesh generation.

To solve Fredholm’s integral equations and experiment with the
decoupled Nyström method, we have placed quasi-uniform scattered
nodes in the interior of Ω using the advancing front algorithm in the
library https://github.com/BrunoDegliEsposti/NodeGenLib

The C++ library has a MATLAB interface, supports 2D/3D domains,
and even trimmed CAD geometries for real-world applications.
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Example of boundary nodes produced by NodeGenLib in 3D

Figure: NodeGenLib boundary nodes on gear shaft for h = 0.02.
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Example of interior nodes produced by NodeGenLib in 3D

Figure: NodeGenLib interior nodes on gear shaft for h = 0.02.
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Meshless moment-free quadrature formulas

Quadrature formulas on scattered data are found using a recently
developed meshless approach that requires neither meshing nor moment
computation [1]. Stable quadrature weights are found as a
minimum-norm solution to a sparse linear system obtained as a
discretization of the divergence theorem by numerical differentiation
formulas, such as those used in polyharmonic RBF-FD.

Sparse interpolation matrices Rh are computed using local
polyharmonic RBF interpolation with polynomial augmentation of
order qR , as implemented in the library mFDlab by Oleg Davydov.

A new result on the stability of Rh for local polyharmonic RBF
interpolation was presented by Oleg on Monday.

[1] Oleg Davydov and Bruno Degli Esposti (2025). Meshless moment-free
quadrature formulas arising from numerical differentiation, CMAME.
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Numerical experiments



Kernels and numerical errors

For the numerical experiments we use normalized Gaussian kernels

k(x , y) = (σ
√

2π)−d exp
(
−∥x − y∥2 /(2σ2)

)
with d = 2 and standard deviation σ > 0.

Relative numerical errors are computed in the L2 norm by integrating
the squared error with (Yh,wh). The squared error is smooth by the
Nyström interpolation formula.

To evaluate numerical errors, the source term f is chosen so that u is a
known function (manufactured solution). In these tests, u is Franke’s
function remapped from [0, 1]2 to [−1, 1]2.

The dense linear system Ah ûh = f |Xh is solved with a direct method.
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Choice of domain and nodes

Let Ω be the region enclosed by a Cassini oval, a quartic plane curve
defined as the locus of points such that the product of the distances to
two fixed points (−a, 0) and (a, 0) is a constant b2 ∈ R+:

Ω =
{
(x1, x2) ∈ R2

∣∣∣ ((x1 + a)2 + x2
2
)(
(x1 − a)2 + x2

2
)
− b4 < 0

}
.

Figure: Cassini oval with a = 0.95 and b = 1. Scattered nodes generated by
NodeGenLib with spacing parameter h = 0.05.
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Convergence orders

Figure: Relative numerical errors as functions of hX for different orders qW .
hY = hX/2, λ = 1, qR = qW , Gaussian kernel with σ = 0.1.
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Efficiency test with localized Gaussian kernel

Figure: Numerical errors as functions of runtime for different ratios hX/hY .
λ = 1, qW = 5, qR = 5, Gaussian kernel with σ = 0.1.
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Nonlinear population dynamics model

Motivated by nonlocal models for population dynamics widely used in
ecology, we seek to compute equilibrium states of

ut =

∫
Ω
k(x , y)

(
u(y)− u(x)

)
dy + u(x)

(
a(x)− u(x)

)
,

i.e. a nonlinear Fredholm integro-differential equation with
Homogeneous Neumann boundary conditions
Logistic growth with carrying capacity a(x)

The nonlinear system is solved using Newton’s method with u(0) = a.

We choose a domain Ω whose shape resembles the island of Sicily, with
piecewise cubic C 0 boundary. The carrying capacity a(x) is a smoothed
height map computed from elevation data.
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Nonlinear population dynamics model

(a) Carrying capacity a(x). (b) Gaussian kernel k(0, y).

(c) Numerical solution. (d) Error convergence plot.

Bruno Degli Esposti (Florence) Decoupled meshless Nyström SMART2025 24 / 26



Conclusion and future work

Conclusion
Solution nodes X can be decoupled from quadrature nodes Y in
Nyström’s method. Theoretical analysis and numerical experiments
demonstrate significantly better efficiency for localized kernels.

Directions for future work
Compression of A using ACA.
How does it affect the optimal ratio hX/hY ?
Extension to evolution equations
Extension to 3D domains and surfaces
Extension to singular/near-singular kernels by locally refining Y

Decoupled Nyström method to find eigenvalues of K
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Conclusion and future work

Thank you for your attention!

And once again, happy birthday Alessandra!
Thank you for everything that you’ve taught
me over the last 5+ years.
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Extra slides



Manufactured solutions with Chebfun

Compared to PDEs, the method of manufactured solutions is harder to
apply to integral equations, because we cannot easily evaluate the
integral over Ω in the expression that defines the right-hand side

f (xi ) := λu(xi )−
∫
Ω
k(xi , y)u(y) dy , xi ∈ X .

We propose the following new approach for all xi ∈ X :
Approximate the function y 7→ k(xi , y)u(y) to machine precision
with a bivariate polynomial pi (y) over a bounding box around Ω
using the open-source library Chebfun.
Find polynomial field Fi such that div(Fi )(y) = pi (y) exactly.
Evaluate the integral over Ω up to machine precision using the
divergence theorem and adaptive Gaussian quadrature on each
smooth piece of ∂Ω, assuming that parametrizations are known.
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