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Introduction

Error plots provide empirical evidence that a numerical method is
convergent. For this reason, they are everywhere in numerical analysis:
more than 30% of the papers uploaded to arXiv last week have one.

Figure: Convergence plots in the wild (authors: Law; Köthe, Steinbach;
Jeong, Townsend). Notice the log-log scale and the reference slopes.
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Introduction

Paradox #1
The complexity of numerical methods has increased tremendously in the
last 80 years, but their performance is still naively evaluated by visual
inspection. Linear regression has been known for 200+ years, and today
can be done with one line of code.

Paradox #2
Mathematicians are unlikely to know and to use statistical methods,
because mathematics is not an experimental science. And yet, the
accuracy and stability of some algorithms can only be tested by
performing numerical experiments.

Trying to avoid statistics can unfortunately lead to bad statistics!

Bruno Degli Esposti (Florence) Convergence rates estimation YAMC25 2 / 20



Introduction

Research topic
We investigate the use of statistical tools to rigorously analyze data
produced by numerical experiments, in particular to estimate error
convergence rates. Typically, errors decay as O(hk) with respect to the
reduction of a discretization parameter h→ 0+.

Real-world applications
The new approach allows us to

Estimate the convergence rate k in both stochastic and “noisy”
deterministic numerical methods
Optimize the number of numerical experiments needed
Quantify uncertainty in the estimation of convergence rates

Bruno Degli Esposti (Florence) Convergence rates estimation YAMC25 3 / 20



Motivation for statistical analysis



Meshless moment-free quadrature

One of my research topics is the construction of quadrature formulas on
scattered nodes (point clouds). Consider a bounded domain Ω ⊂ Rd .

Yh ⊂ Ω interior quadrature nodes with weights wh ∈ R|Yh|

Zh ⊂ ∂Ω boundary quadrature nodes with weights vh ∈ R|Zh|

∫
Ω
f (x) dx ≈

|Yh|∑
i=1

wh,i f (yh,i )

∫
∂Ω

g(x) dσ(x) ≈
|Zh|∑
i=1

vh,ig(zh,i )

In the context of scattered nodes, h is typically defined as the fill
distance, i.e. the size of the largest hole in the point distribution.

We want to establish convergence of the errors as h→ 0+.
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Meshless moment-free quadrature

In [1] we introduced a way to simultaneously compute quadrature
weights w and v by discretizing the divergence theorem. As usual, to
publish our discovery, we had to run numerical experiments and produce
convergence plots. However, errors can decay erratically, and the rate
of convergence is not always clear. Example: quadrature error on torus.

[1] Oleg Davydov and Bruno Degli Es-
posti (2025). Meshless moment-free
quadrature formulas arising from nu-
merical differentiation, CMAME.

What is the source of this noise?
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Node generation

Scattered nodes Z over the boundary of Ω and Y over the interior of Ω
are generated by an advancing front method which, at every step, calls
a random number generator (RNG) to place new candidates for
expansion around existing nodes at distance h.

Quadrature errors are a function of RNG seed, i.e. a random variable.
Errors on the plot are independent samples. Noise comes from variance!
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Node generation

(a) Torus r = 0.32,R = 1. (b) Boundary nodes.

(c) Interior nodes. (d) Section of the nodes.

Figure: Nodes produced by advancing front method on a torus, h = 0.05.
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Node generation (shameless advertisement)

Advancing front method available as C++/MATLAB library at
https://github.com/BrunoDegliEsposti/NodeGenLib
The code natively supports STEP files, the standard in CAD.
Does anyone here need to train PINNs on CAD models?

(a) Nodes on surface of gear shaft (b) Nodes inside gear shaft
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Noisy errors

Quadrature errors on the torus for 8 different seeds:

Too noisy to publish! Remember: cherry picking seeds is scientific fraud.

Standard fix: average errors over seeds to reduce variance.
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Noisy errors

Plot of averaged errors. Least squares line fit estimates k = 4.4.

Pros: simple fix, enough to publish our paper.

Cons: runtime has grown by 8x, and the exact order is still unclear.
How does the residual noise affect our estimate of k?
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Modeling errors as random variables

Fundamental intuition
Numerical errors should be modeled as random variables Xh not only in
the case of stochastic algorithms (e.g. Monte Carlo integration), but
also with deterministic methods subject to arbitrary choices which
cannot be carried out in a unique or canonical way. Examples:

Placement of scattered nodes in meshless methods
Generation of a mesh with target element size h in FEM
Choice of initialization in iterative algorithms

In principle, a numerical method can have two distinct (algebraic) rates
of convergence k1 and k2: decay rate of the mean errors, and decay
rate of the standard deviations of the errors:

E(Xh) ≈ c1h
k1 σ(Xh) ≈ c2h

k2 for h→ 0+.
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Normal model for signed errors

Statistical inference of convergence order requires a model. We use the
simple three-parameter normal model

Xh ∼ N
(
c1h

k , (c2h
k)2
)
, θ = (c1, c2, k).

Modeling assumptions
1 Errors are signed, which means that they can take on both positive

and negative values. This is the case for quadrature errors.
2 Normally distributed errors. Intuition: the global error is often the

combination of many small weakly-dependent local errors.
3 The mean and standard deviation of the errors decay at the same

rate, to improve robustness and lower cost of inference.
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Normal model for signed errors

The model reproduces both smooth and noisy convergence plots,
depending on the ratio c1/c2.

(a) c1 = 8, c2 = 1, k = 1, . . . , 4. (b) c1 = 1, c2 = 1, k = 1, . . . , 4.

Figure: Absolute values of independent samples of the normal error model.

If c2 ≫ c1, E(Xh) dominates σ(Xh) and the error plot looks smooth.
Otherwise, σ(Xh) is large enough to make convergence erratic.
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Normal model for signed errors

The normality assumption can be checked for mesh-based methods by
randomly perturbating a given mesh, or by running the same algorithm
on several meshes of equivalent quality.

(a) Trapezoidal quadrature in 1D (b) FEM with P1 elements on torus

Figure: Error histogram and empirical CDF of two common numerical
schemes, validating the normality assumption.
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Bayesian inference and numerical results



Posterior inference via MCMC

Let x = (x1, . . . , xn) be the measured numerical errors,
and h = (h1, . . . , hn) the corresponding discretization levels.

The log-likelihood under the assumed generative model is

log
(
p(x | θ)

)
= −n

2
log(2π)−

n∑
i=1

[
log(c2h

k
i ) +

(xi − c1h
k
i )

2

2c2
2h

2k
i

]
.

We consider weakly informative priors

c1 ∼ N (0, σ2
c ), c2

2 ∼ IG(a, b), k ∼ N+(0, σ2
k).

In our numerical experiments, σ2
c = 100, a = 2.1, b = 1.1, σ2

k = 25.

Posterior inference for the parameters is performed via a
Metropolis-within-Gibbs Markov Chain Monte Carlo algorithm.
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Posterior inference via MCMC

Algorithm 1: Metropolis-within-Gibbs sampler

Initialize parameters c
(0)
1 , c

(0)
2 , k(0) by sampling prior distributions

for i = 1, . . . ,N do
Update c1 via Metropolis-Hastings step with proposal variance υc
Update c2

2 via a Gibbs step using the full conditional distribution

c2
2 | c1, k, x ∼ IG

(
a+

n

2
, b +

1
2

n∑
i=1

(xi − c1h
k
i )

2

h2k
i

)

Update k via Metropolis-Hastings step with proposal variance υk

Output posterior samples after burn-in period and thinning

In our numerical experiments N = 106, length of burn-in period is N/2,
and thinning keeps 10% of the samples. Acceptance rate is around 23%.
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Posterior inference via MCMC

Validation of the MCMC approach
We fix θ, generate x using our normal model for the errors with
parameters θ, and run MCMC to recover θ. For example,

k = 2 and c1 ≫ c2 → Estimate k = 2.009± 0.002 for n = 10

k = 2 and c1 ≪ c2 → Estimate k = 2.022± 0.058 for n = 10

The assumption k1 = k2 = k is critical for the success of our approach
in the case c1 ≪ c2: a four-parameter model cannot recover c1 and k1
because the signal drowns in noise.
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Posterior inference via MCMC

Consider again the quadrature errors on the torus for 8 different seeds.
Each seed is used to run 8 simulations with h in the range 0.1 to 0.02.

Theoretical analysis of the meshless quadrature scheme predicts O(h4)
convergence. However, the method might be superconvergent. Naive
linear regression of averaged errors estimates k = 4.4. The evidence is
not strong enough to claim that our method is superconvergent.

To support this claim, we need our new statistical approach:

Seeds n c1 c2 k

1 8 3.95± 3.14 25.95± 27.63 4.69± 0.24
2 16 2.51± 1.93 23.85± 23.02 4.65± 0.21
4 32 2.86± 1.83 44.21± 31.61 4.73± 0.18
8 64 2.01± 1.37 36.30± 31.03 4.69± 0.15

Table: Means and standard deviations of posterior samples.
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Conclusion and future work

Conclusions
Bayesian inference can be used to robustly estimate error convergence
rates of numerical methods, even in the presence of noise.

Our estimate of k comes with a measure of uncertainty
We can decide if more numerical experiments need to be
performed based on the uncertainty
Coefficients c1 and c2 of competing numerical methods with the
same order of convergence can be compared

Directions for future work
Extend the model to unsigned errors using folded normals
Investigate the case k1 ̸= k2
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Conclusion and future work

Does your numerical method produce noisy errors?
Drop me an email at bruno.degliesposti@unifi.it

Thank you for your attention!

Hopefully not you by now

←−
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